SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

	COURSE OUTLINE		
Course Title:	INSTRUMENTATION/PROCESS CONTROL		
Code No.:	ELN 222		
Program:	ELECTRICAL/ELECTRONIC TECHNICIAN		
Semester:	FOUR		
Date:	JANUARY 1986		
Author:	ROB PALO		
	New: Revision:X		
APPROVED:	Chairperson Date		

CALENDAR DESCRIPTION

INSTRUMENTATION/PROCESS CONTROL Course Name

ELN 222-4 Course Number

PHILOSOPHY/GOALS:

This course is intended to introduce the Electrical/Electronic Technician to process measurement and control.

GRADING:

- 1. Written tests are conducted at regular intervals and assigned equal weight. Missed tests are graded zero percent provided a legitimate excuse such as illness can be supported by a doctor's certificate. Comprehensive make-up tests will be conducted at the end of the semester for people with missed tests and legitimate excuses.
- 2. Grading A 80 100% B 66 79% C 55 65% R Repeat
- 3. 70% for tests 30% for labs
- 4. Lecture and lab attendance are mandatory.

TEXTBOOK(S):

Industrial Solid State Electronics by Timothy J. Maloney

REFERENCE TEXT(S):

Fundamentals of Process Control Theory by Paul W. Murril

COURSE OUTLINE

BLOCK	TOPIC	HOURS
1	Input transducers - measuring devices	6
2 .	Feedback systems & Servomechanisms	12
3	Final correcting devices and amplifiers	6
4	Nine examples of closed Industrial Systems	6

SPECIFIC OBJECTIVES

- 1. The student shall understand the theory and meeting of the following:
 - a) Potentiometers
 - b) LVDT's
 - C) Plessure transducere
 - d) Thermocouples
 - e) Thermistors and RTD's
 - f) Photocells and Photo electric devices
 - g) Strain gauge
 - h) Tachometers
 - i) Humidity transducers

BLOCK 2 - FEEDBACK SYSTEMS

- 1. The student shall be able to describe the principle of operation and predict the behaviour to a step input for the following:
 - a) Open loop systems
 - b) Closed loop systems
 - g) Process response

BLOCK 3 - FINAL CORRECTING DEVICES

- 1. The student shall be able to describe the principle of operation and predict the behaviour of the following devices:
 - a) Solenoid valves
 - b) 2 position electric motor driven valves
 - c) Electropneumatic valves
 - d) Electrohydraulic valves
 - e) Valve flow characteristics
 - f) Relay and contactors
 - g) Thyristors
 - h) Split phase AC motors
 - i) AC servo motors
 - j) Solid state AC servo amps
 - k) DC servo motors
 - 1) Amps for DC servo motors

BLOCK 4 - NINE INDUSTRIAL CONTROL SYSTEMS

- 1. The student shall be able to describe the following control systems:
 - a) Thermistor control of quench oil temperature
 - b) A proportional mode pressure control system
 - c) A proportional plus reset temperature controller with thermocouple I/P
 - d) A strip tension controller
 - e) Edge guide control for a strip recoiler
 - f) An auto weighing system
 - g) A carbon dioxide controller for a carburizing furnace
 - h) Control of relative humidity in a textile moistening process
 - i) A warehouse humidity controller